Profiler Applications

Wayne Angevine CIRES / NOAA Aeronomy Lab

- Boundary layer height
- II. Temperature (RASS)

Allen White CIRES / NOAA Environmental Technology Lab

III. Turbulence intensity IV. Weather phenomena

Profiler Applications

I. Boundary layer height

- Orientation
- Reflectivity patterns
- Complications
- More information to aid interpretation

II. Temperature (RASS)

- Accuracy, precision, and biases
- Applications

Atmospheric Boundary Layer Diurnal Variation

How is BL height found?

- > Primary method uses reflectivity pattern
 - Reflectivity peaks at BL top, providing a sharp indication
- Other parameters are used to clarify difficult or ambiguous cases
 - Ceilometer cloud base
 - Spectral width
 - RASS temperature

How does a profiler see the ABL?

Reflectivity is roughly the product of humidity gradient and turbulence intensity

Deep layer

Note deep entrainment signatures

Residual layer

Can fool simple automated algorithms

Low humidity

Weakens signal

Weak inversion, cloud

- Broad or weak inversion
- "Deep" but nonprecipitating cloud
- Ceilometer aids greatly in interpretation

Weak inversion, cloud

Note disappearance of BL signature 1400-1500 CST

Multiple layers

Note correlation of layers to soundings

Multiple layers

Can fool simple automated algorithms

Overcast and rain

> (Pease day 196 2002)

Coastal BL with sea breeze

> (Pease day 215 2002)

Marine BL

> (Appledore day 181 2002)

Marine BL

- With advected continental BL in the morning
- (Appledore day 215 2002)

Basic rule

- Profilers can find convective boundary layer when it is defined physically
- Other types of BLs are more challenging
- Sometimes the physical definition of the BL is the issue

How do we find BL height in practice?

- Most reliable method is subjective determination based on reflectivity pattern with all available ancillary measurements
- Some automated algorithms exist in research environments
- ➤ Using more information (cloud data, more moments, time & space patterns) yields better results

Morning transition

- Transition between nocturnal, stable BL and daytime convective BL
- Profiler reflectivity patterns give a very good indication of timing of morning transition

Afternoon transition

- Transition between fully-developed daytime convective ABL and nocturnal ABL
- ➤ Timing and shape of transition are critical to initiation of inertial oscillation / low-level jet, nighttime transport, distribution of pollutants, etc.
- Turbulence gradually decreases in height and intensity
- Reflectivity can be misleading, it tends to show the residual inversion
- Spectral width is most useful to distinguish active turbulent region from developing residual layer

Profiler reflectivity and spectral width patterns for a "typical" day

Spatial variation of BL height

- Urban dome or urban heat island measured by profilers in urban core and in surrounding rural areas
- Implications for pollutant concentration and transport

Coastal influence on BL behavior

- ➤ Five profilers in Houston area for TEXAQS2000
- ➤ LaMarque, near
 Galveston Bay, shows
 coastal influence on
 this day
- We are studying sea breeze influence on pollution episodes
- Also note non-ICRA data at Ellington

RASS

- Many profilers have RASS
 (Radio Acoustic Sounding System) attached to measure (virtual) temperature
- RASS data can be useful but their limitations must be understood
- Height coverage is limited and varies with wind speed and other conditions
- Height-dependent bias is present due to range error – correction algorithms exist but are non-trivial
- RASS combined with surface data can be useful for finding nocturnal BL heights

References

- Angevine, W.M., A.B. White, and S.K. Avery, 1994: Boundary layer depth and entrainment zone characterization with a boundary layer profiler. *Boundary Layer Meteor.*, **68**, 375-385.
- Angevine, W.M., W.L. Ecklund, D.A. Carter, K.S. Gage, and K.P. Moran, 1994:
 Improved radio-acoustic sounding techniques. *J. Atmos. Oceanic Technol.*, **11**, 42-49.
- Angevine, W.M., and W.L. Ecklund, 1994: Errors in radio acoustic sounding of temperature. *J. Atmos. Oceanic Technol.*, **11**, 837-848.
- Angevine, W.M., and J.I. MacPherson, 1995: Comparison of wind profiler and aircraft wind measurements at Chebogue Point, Nova Scotia. *J. Atmos. Oceanic Technol.*, **12**, 421-426.
- Carter, D.A., K.S. Gage, W.L. Ecklund, W.M. Angevine, P.E. Johnston, A.C. Riddle, J. Wilson, and C.R. Williams, 1995: Developments in UHF lower tropospheric wind profiling at NOAA's Aeronomy Laboratory. *Radio Sci.*, **30**, 977-1001.
- Peters, G., and W.M. Angevine, 1996: On the correction of RASS-temperature errors due to turbulence. *Contributions to Atmospheric Physics*, **69**, 81-96.
- Riddle, A.C., W.M. Angevine, W.L. Ecklund, E.R. Miller, D.B. Parsons, D.A. Carter, and K.S. Gage, 1996: In situ and remotely sensed horizontal winds and temperature intercomparisons obtained using Integrated Sounding Systems during TOGA COARE. Contributions to Atmospheric Physics, 69, 49-62.

References, continued

- Angevine, W.M., 1997: Errors in mean vertical velocities measured by boundary layer wind profilers. *J. Atmos. Oceanic. Technol.*, **14**, 565-569.
- Angevine, W.M., P.S. Bakwin, and K.J. Davis, 1998: Wind profiler and RASS measurements compared with measurements from a 450 m tall tower. *J. Atmos. Oceanic. Technol.*, **15**, 818-825.
- Angevine, W.M., A.W. Grimsdell, L.M. Hartten, and A.C. Delany, 1998: The Flatland boundary layer experiments. *Bull. Amer. Meteorol. Soc.*, 79, 419-431.
- Grimsdell, A.W., and W.M. Angevine, 1998: Convective boundary layer height measured with wind profilers and compared to cloud base. *J. Atmos. Oceanic Technol.*, **15**, 1332-1339.
- Görsdorf, U., and V. Lehmann, 2000: Enhanced accuracy of RASS-measured temperatures due to an improved range correction. J. Atmos. Oceanic Technol., 17, 406-416.
- Cohn, S.A., and W.M. Angevine, 2000: Boundary layer height and entrainment zone thickness measured by lidars and wind profiling radars. *J. Appl. Meteorol.*, **39**, 1233-1247.
- Angevine, W.M., H. Klein Baltink, and F.C. Bosveld, 2001: Observations of the morning transition of the convective boundary layer. *Boundary-Layer Meteorol.*, **101**, 209-227.
- Grimsdell, A.W., and W.M. Angevine, 2002: Observations of the afternoon transition of the convective boundary layer. *J. Appl. Meteorol.*, **41**, 3-11.
- Cohn, S.A., and R.K. Goodrich, 2002: Radar wind profiler radial velocity: A comparison with Doppler lidar. *J. Appl. Meteorol.*, **41**, 1277-1282.